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Abstract

A linear analysis is made of a single collision between two single-degree-of-freedom systems separated by
a gap. The contact is modelled by a spring and a viscous damper. The approach is to describe the motion of
the pair as being composed of sum and difference displacements. The equation of motion during contact is
found and the solution is obtained from the conditions at initial contact. The main parameters are the ratio
of strain energy to kinetic energy at initial contact, and the damping of the contact. The contact time and
the energy loss are calculated, which gives an expression for the coefficient of restitution for the collision.
This coefficient is found to be dependent on the collision velocity, but becomes constant for strong
collisions.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Whenever two mechanical systems collide there is an exchange of momentum and also energy is
dissipated in the high stress region of contact. This energy dissipation is the work involved in
damped elastic behavior and also plastic deformation and fracture. Although there are many
practical examples available, the case of interest here is the collision of a line of adjacent building
structures during seismic activity [1,2]. This paper is presented as the first step in the analysis of
this problem, but is also has general application.
Collision problems are usually approached by assuming that the contact stiffness is large in

comparison to the oscillator stiffness, which justifies the use of a ‘‘coefficient of restitution’’ that is
constant for impacts of any strength [1,3–6]. This coefficient is usually derived from the collision
of a free body with a general boundary, which assumes that at the moment of initial contact all the
energy is kinetic and is available for transfer to the boundary. However, if an oscillator rather
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than a free body is in collision with a boundary, at the moment of initial contact strain energy
remains stored within the oscillator stiffness, and is therefore not available for transfer to the
boundary. The conventional coefficient of restitution cannot thus be used with complete
confidence.
The purpose of this paper is therefore to investigate a single collision between two oscillators

separated by a damped contact stiffness, to determine: the energy loss, contact duration and
coefficient of restitution as a function of the physical parameters, and the velocities and
displacements at initial contact.
Each oscillator consists of a mass and a spring with viscous damping. The contact is also modelled

as a spring with a viscous damper as in Ref. [7]. There is a separation between the oscillators when at
rest. This choice of damping was made simply because the decay rate of the time response is
controlled only by the damping at the resonance frequencies, and is independent of the general
frequency characteristic of the damping mechanism. Other possible damping mechanisms more
representative of real materials can be composed from a summation of Kelvin–Voigt relaxation
elements [8]. These however add to the oscillatory response of a non-oscillatory decay response, the
form of which is particular to the exact frequency response between zero and the resonance
frequency. The solution to these problems is therefore possible but are not of general application.
The analysis here only considers the actual contact period between two oscillators, and deploys

a device where the oscillator motions are not described independently but rather as a pair with
two almost uncoupled modes. One mode describes the mean or in-phase motion, which is not
greatly affected by the collision. The other mode describes the relative motion and hence the
collision dynamics. This basic assumption is only rigorously true for identical oscillators;
however, it is shown that it also holds good for a broader application described as ‘‘similar
oscillators’’ during the short contact interval following the initial conditions.
The benefit of this representation of ‘‘similar oscillators’’ (such as adjacent buildings) is that

only the relative motion is altered by the collision. This implies that the relative motion can be
modelled as single degree-of-freedom system, leading to closed form solutions for contact time,
momentum exchange, energy dissipation and coefficient of restitution.
The solution depends upon an important non-dimensional parameter called ‘‘impact strength’’,

which is the ratio of the oscillator kinetic energy to strain energy at the moment of initial contact.
For impact strength greater than unity the solution for relative motion tends to that for a
viscously damped contact stiffness applied to a single degree of freedom [6]; the coefficient of
restitution and contact time then become independent of impact strength as is generally assumed
in the previous work [1,5].

2. Equations of motion

Consider Fig. 1 in which two oscillators a, b, are spaced a distance D, and have masses ma; mb;
viscous damping ca; cb and real stiffnesses k0

a; k0
b: The distances ua; ub describe the displacements

relative to the equilibrium position.
Before contact the oscillators are in free motion, solutions of

Kaua ¼ 0; Kbub ¼ 0; ð1a;bÞ
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where

Ka ¼ D2ma þDca þ k0
a; Kb ¼ D2mb þDcb þ k0

b;

and D is a differential operator d/dt. The solution to equations 1a and 1b include the two
oscillator damped natural frequencies oa and ob:
The displacements may also be described by the sum and difference displacements us; ud;

us ¼ ua þ ub; ud ¼ ua � ub ð2a;bÞ

and the sum and difference dynamic stiffnesses Ks; Kd; i.e.,

Ks ¼ Ka þ Kb; Kd ¼ Ka � Kb: ð3a;bÞ

The sum displacement in Eq. (2a) is the in-phase component of the two oscillator motions which is
therefore almost unaffected by the collisions. The difference displacement in Eq. (2b) describes the
relative motion outside and within the contact.
Within the contact when ud > D; a contact force F in proportion to the product of complex

contact stiffness, k ¼ k0 þDc; and relative displacement ur; occurs in accordance with Fig. 2. The
stiffness of the contact is k0 and the viscous damping constant is c. The relative displacement ur
used during contact is simply related to the general difference term ud by:

F ¼ kur; ur ¼ ud � D: ð4a;bÞ

The contact force acts equally on both oscillators, thus

Kaua ¼ �F; Kbub ¼ F: ð5a;bÞ

Elimination of this force yields the equations for conservation of linear momentum, i.e.,

Kaua þ Kbub ¼ 0: ð6Þ
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Fig. 1. Two separated oscillators.

Fig. 2. Contact model for ud > D:

R.J. Pinnington / Journal of Sound and Vibration 268 (2003) 343–360 345



By substituting from Eqs. (2) and (3) these may written in the sum and difference form of the
alternative oscillator pair as

Ksus þ Kdud ¼ 0: ð7Þ

For the special case of identical oscillators, i.e. Ka ¼ Kb Eqs (3b) and (7) show that the sum and
difference motion is entirely independent, i.e.,

Kdud ¼ 0; Ksus ¼ 0:

When contact occurs, only the difference motion will be modified, which is the central idea here.
To investigate how far the identical oscillator result can be extended the analysis is now continued
for the general case. Eqs. (4)–(6) can be combined to give the equation of motion for difference
displacement during the contact.

ðKaKb=Ks þ kÞud ¼ kD; ð8Þ

the solution of which yields the difference displacement, contact period, contact force and energy
dissipation. The change in sum displacement us can then be calculated from the momentum,
Eq. (7).

3. Simplification of the equations of motion

The full solution of Eq. (8) for difference motion during contact is rather awkward as it is for a
fourth-order differential equation. It will be shown however that if the oscillators have a similar
scale it may be reduced to an equation of the second order for the short time of contact. This
simplified equation yields the expression for contact duration and ultimately the coefficient of
restitution. The first group of terms may be referred to as the oscillator ‘‘interaction dynamic
stiffness’’ Kd0; i.e.,

Kd0 ¼ KaKb=ðKa þ KbÞ: ð9aÞ

Using Eqs. (1a) and (1b) and a harmonic solution eiot it is expanded as

Kd0 ¼ ðka � o2maÞðkb � o2mbÞ=ðka þ kb � o2ðma þ mbÞÞ: ð9bÞ

For a compact form the complex stiffness ka ¼ k0
a þ ioca; kb ¼ k0

b þ iocb; are defined. Eq. (9b)
is plotted in Fig. 3. At low frequencies in zone (1) the dynamic stiffness Kd0 asymptotes to the
complex ‘‘interaction stiffness’’ kd0 ¼ kakb=ðka þ kbÞ:

Kd0 ¼ kd0 ð10Þ

At high frequencies in zone (2) the dynamic stiffness asymptotes to the interaction mass md0 ¼
mamb=ðma þ mbÞ are

Kd0 ¼ �o2md0 ð11Þ

where the ‘‘free interaction frequency’’ is defined from o2d0 ¼ kd0=md0: It will be seen later that the
interaction mass and stiffness describe the portion of the oscillator mass and stiffness that
participates in the collision.
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This would suggest a dynamic stiffness with an approximate form seen in Fig. 3, corresponding
to that of a single degree-of-freedom system

Kd0Ekd0 � o2md0; ð12Þ

To demonstrate that such an approximation is valid for the short contact duration, the free
vibration solution of Eq. (8) must be considered. This has roots at7oa; 7ob one pair from each
equation of motion (1a), (1b) and in the numerator of Eq. (9). The oscillator displacements ua; ub

are

ua ¼ A1e
�ioat þ A2e

ioat; ub ¼ B1e
�iobt þ B2e

iobt; ð13a;bÞ

where A1, A2, B1, B2 are constants dependent upon the conditions at initial contact at time t ¼ 0

’ua ¼ ’Ua; ’ub ¼ ’Ub; ua ¼ Ua; ub ¼ Ub;

For real values of initial displacement and velocity equation (13) yields

A2 ¼ A�
1; B2 ¼ B�

1;

where * denotes the complex conjugate. As time is measured from initial contact the relative
displacement ur is the difference between ua and ub in Eqs. (13a,b)

ur ¼ 2RðA1e�ioat � B1e
�iobtÞ; ð14Þ

where R denotes the real part. As the relative motion is zero at initial contact, i.e., t ¼ 0; then
Eq. (14) gives

A1 ¼ B1: ð15Þ

The relative motion may be further simplified by defining $ as the mean of oa and ob as in
Fig. 3, and defining od as half the difference

$ ¼ ðoa þ obÞ=2; od ¼ ðoa � obÞ=2: ð16a;bÞ

Substitution of Eqs. (16) and (15) into (14) gives the relative displacement as

ur ¼ 4RðA1 expð�i$tÞÞcosodt: ð17Þ

If the impacting pair of oscillators have similar natural frequencies then $cod; in which case
for the contact duration (corresponding to p > $t), the cosodt term stays close to unity and so
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can be neglected. The relative motion then takes the form of the impulse response of a single
degree-of-freedom system of natural frequency $. This shows that the approximate form of
Eq. (12) is appropriate, provided that $Eod0: To determine the range of values for which this is a
valid approximation, the quotient o0=$ is expanded from Eqs. (11) and (16) to give

od0=$ ¼ ðð1þ m0Þ=ð1þ m0 � ð1� m0Þod=$ÞÞ1=2; ð18Þ

where m0 ¼ ma=mb: For identical oscillators od0=$ ¼ 1; as expected. However even if m0 ¼ 2; and
od=$ ¼ 1; as for rather dissimilar oscillators, the quotient od0=$ ¼ 0:86; which is still sufficiently
close to unity to suggest that the approximation is still useful and has a broad range of
application.

4. Solution for relative motion during contact

In the previous section some justification was given for expressing the difference displacement
ud as a simplified form of Eq. (8)

ðKd0 þ kÞud ¼ kD;

which on substitution from Eq. (12) and applying a harmonic solution eiot; becomes

ð�o2md0 þ ioðcd0 þ cÞ þ k0
d0 þ k0Þud ¼ kD: ð19Þ

The solution has two parts; the complementary function udc and particular integral udp: The
particular integral is the steady state response arising from the constant forcing function on the
right side

udp ¼ k0D=ðk0
d0 þ k0Þ: ð20Þ

The complementary function is found by setting the right side of Eq. (19) to zero

ð�o2md0 þ ioðcd0 þ cÞ þ k0
d0 þ k0Þudc ¼ 0 ð21Þ

and finding a solution udc which satisfies the conditions at initial contact t ¼ 0: The pair of
complex roots from Eq (21) are: o ¼ xr; o ¼ x�

r where the complex form of xr is for light
damping, zro1; in this analysis

xr ¼ orr þ igrr: ð22Þ

These give the ‘‘interaction frequency’’ that governs the contact time and the dissipation of
energy during contact. This is od0 in Eq. (11), now modified by the contact stiffness

xr ¼ o0
d0ð1þ k0=k0

d0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2r

q
þ izr

� �
; ð23Þ

where the viscous damping coefficient is

zr ¼ ðc þ cd0Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md0ðk0 þ k0

d0Þ
q

: ð24Þ

The general solution is the sum of the complementary function and particular integral,

ud ¼ Are
�ix�

r t þ Bre
�ixrt þ udp: ð25Þ
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The constants Ar; Br can now be found from the initial conditions. At t ¼ 0; ud ¼ D; giving

Dr ¼ Ar þ Br: ð26Þ

The modified separation Dr is obtained using Eq. (20),

Dr ¼ Dk0
d0=ðkd0 þ k0Þ ð27Þ

Differentiation of Eq. (25) gives the relative velocity

’ud ¼ �ix�
rAre

�ix�
r t þ ioBre

ixrt ð28Þ

The relative velocity at t ¼ 0 is defined as

’Ud ¼ ’Ua þ ’Ub; ð29Þ

which on substitution into Eq. (28) gives

’Ud ¼ �ix�
rAr þ ixrBr: ð30Þ

Rearrangement of Eqs. (25) and (30) give Ar and Br:

Ar; Br ¼ ðDrxr7i ’UdÞ=ðxr þ x�
r Þ: ð31Þ

These are a complex conjugate pair because the relative velocity in Eq. (28) must be real.
Substitution of Eq. (31) into Eq. (25) gives the relative displacement during contact ur; where ur is
a special case of the difference displacement ud that applies during contact as defined in Eq. (4)

ur ¼ ðDr cosorrt þ ðDrdr þ ’Ud=orrÞ sinorrtÞe�grrt � Dr: ð32Þ

A ‘‘loss ratio’’ dr is defined from Eqs. (22) and (23) as a function of the viscous damping
coefficient. As the damping coefficient can take the range between zero and unity, the ‘‘loss ratio’’
in Eq. (33) covers the full range of zero to infinity:

dr ¼ grr=orr ¼ zr=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2r

q
; zro1: ð33Þ

The displacement amplitude is controlled by two input parameters: ’Ud=orr and Dr: The first is
the maximum displacement that would occur if there was no initial separation between the
oscillators, and is related to the kinetic energy at contact Td: The second is Dr; a negative
displacement step reducing the depth of contact; it is related to the strain energy at contact S0d:
Eq. (27) shows that this term increases both with the oscillator stiffness ka; kb; relative to the
contact stiffness k, and also the initial separation D. The ratio of these two displacements gives a
non-dimensional parameter referred to here as the ‘‘impact strength’’, #b

#b ¼ ’Ud=ðorrDrÞ: ð34aÞ

This is related to the ‘‘impact ratio’’ at initial contact b by

b2 ¼ Td=S0d; ð34bÞ

where #b=b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kd0 þ k=kd0

p
:

Eq. (32) can be regrouped using this term and the expansion:

sinða þ bÞ ¼ sina cosb þ cosa sinb ð35Þ
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giving the relative displacement during contact as

ur ¼ Dr
sinðorrt þ fÞe�grrt

sinf
� 1

� �
; ð36Þ

where

sinf ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdr þ #bÞ2

q
ð37Þ

and

tanf ¼ 1=ðdr þ #bÞ: ð38Þ

Eq. (36) is plotted in Fig. 4(a). The relative displacement is zero at initial contact and has a
maximum at a time t ¼ ta of

#ur ¼ Dr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ #b2

q
� 1

� �
: ð39Þ

Before further interrogation of Eq. (36) a relatively brief energy analysis is made of the collision
to confirm the outcome and to give some physical insight.

5. Energy relationships and contact duration

Fig. 5 shows the force-difference displacement curve. Between 0 > ud > D there is no contact
and the gradient is kd0 which is defined in Eq. (12). When ud ¼ D initial contact is made, thereafter
for ud > D the gradient is that of the combined stiffness, i.e., kd0 þ k: At the instant of contact the
kinetic energy Td is

Td ¼ 1
2

md0
’U2
d: ð40Þ

The strain energy #Sd stored between contact and the peak displacement is the area under the
curve ud > D; i.e.,

#Sd ¼ 1
2 ðkd0 þ kÞ #u2r þ kd0 #urD: ð41Þ

This strain energy is shared between the contact stiffness k and the oscillator interaction
stiffness kd0: Equating this strain energy to the kinetic energy gives a quadratic in terms of the
peak displacement

0 ¼ #u2r þ 2Dr #ur � ð ’Ud=orrÞ
2: ð42Þ

The peak relative displacement, taken from the positive root gives the same result as Eq. (39),
which was obtained with rather more labour. This equation is however not very convenient and so
an approximation is selected which is accurate at the asymptotes 1{ #bc1 and has at worst a 10%
error when #b ¼ 1; i.e.,

#ur ¼ ð ’Ud=orrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#b2=ð4þ #b2Þ

q
: ð43Þ

The peak strain energy within the contact stiffness alone #Sdc is taken from the square of
the peak relative displacement in Eq. (43). This is the energy available for dissipation or damage in
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the contact

#Sdc ¼ 1
2
kð ’Ud=orrÞ

2 #b2=ð4þ #b2Þ: ð44Þ

If the energy ratio #bc2; more energy is stored within the contact stiffness k than in the
oscillator stiffness’ kd0: Under this condition the oscillator stiffness can be neglected and the
collision is that between free bodies, when the usual constant coefficient of restitution could be
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Fig. 4. (a) Contact depth against time; (b) time shifted contact depth; (c) time shifted relative velocity.
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used for calculations. Eq. (36) shows that the contact pulse approaches a simple half sine, seen in
Fig. (6). If however there is only a light impact such that #b{2 then the collision dynamics are
more controlled by the oscillator stiffness than the contact stiffness. As indicated from Eqs. (34)
and (44), much less energy is available for damage. Fig. 6 and Eq. (36) show a greatly truncated
half sine, which is nevertheless still quite similar to a half sine.
If there is no energy dissipation the contact duration can also be estimated from the expressions

above. The main assumption is that the kinetic energy given in Eq. (40) can also be written as

Td ¼ 1
2

md0o2rc #u
2
r : ð45Þ

The contact duration tc is assumed to be a half sine, and gives an ‘‘equivalent interaction
frequency’’ orc from

tc ¼ p=orc: ð46Þ
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Fig. 6. Contact depth as a function of time and impact strength #b: (1) #b > 1; (2) #b� 1; (3) #bo1:

Fig. 5. Difference force against relative velocity.
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Although this is only strictly accurate for heavy contact, it can be shown to be quite acceptable
even for light contact, as truncation of a half sine does not greatly alter its shape. The contact
frequency orc can be found from Hamilton’s Principle, effectively,

@ðTd � #SdÞ=@ #ur ¼ 0: ð47Þ

Td and #Sd are in Eqs. (41) and (45). Using also Eq. (28b) the equivalent interaction frequency is

orc ¼ orr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Dr= #ur

p
: ð48Þ

If a substitution is made from Eq. (43) this becomes

orc ¼ or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ #b2Þ

q
= #b2

r
: ð49Þ

The contact duration tc is now available from Eqs. (46) and (49), in which orr is the real part of
Eq. (22). tc is plotted against impact strength #b; as the solid line in Figs. 7(a) and (b). The contact
time is important as it controls the coefficient of restitution. For strong impacts when #bc2 there
is a plateau region where from Eq. (49), orrDorc: Therefore in this region the coefficient of
restitution is constant. For weak impacts when #b{2 the contact duration increases with impact
strength #b according to

tc ¼ p #b=orr
ffiffiffi
2

p
: ð50Þ

6. Energy dissipation and contact duration

In the previous section it was shown that the contact duration is a function of the impact
strength, while here the relationship with the loss ratio dr is established. In the event of impacts
involving damage, large losses are possible and the calculations must therefore accommodate the
full range of loss ratio i.e. 0odroN; (see Eq. (33)).
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Fig. 7. Approximate contact time (a), and estimated contact time (b), against non-dimensional time: —, loss

ratio=0.01; y.., loss ratio=0.5, xxxxx, loss ratio=1.0.
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Eq. (36) for the relative displacement during contact is plotted in Fig. 4(a). Initial contact
occurs when t ¼ 0; and so the other root of this expression yields the general form of the contact
duration tc: As it is difficult to provide a simple algebraic solution directly the following path is
employed
Fig. 4(b) shows Eq. (51), a rearrangement of Eq. (36). The contact occurs for time �t1otot2:

ur ¼ Drðegrrðtþt1Þ cosorr � sinfÞ=sinf: ð51Þ

The times t1 and t2 are the solution of Eq. (52), the numerator of Eq. (51), at zero relative
displacement:

0 ¼ errrðtþt1Þcosorrt � sinf: ð52Þ

The contact duration is

tc ¼ t1 þ t2 ð53Þ

The first interval t1 is found by setting t ¼ �t1 in Eq. (52) and making an approximation for the
cosine of the form

cosxE1� x2=2: ð54Þ

This approximation only becomes inaccurate when x is almost 7p=2; and so is acceptable
within the range of contact. Solution of the quadratic form of Eq. (52) gives two roots

t1 ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� sinfÞ

p
=orr: ð55Þ

The negative root represents the real value of t1. However if there is no attenuation the contract
pulse is symmetrical and the positive root is equal to t2. The contact duration can thus be
expressed as 2t1, i.e.,

tc ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� sinfÞ

p
=orr ð56Þ

which could be shown to be very close to the estimate made from Eqs. (46) and (49) using the
energy approach.
The general form of t2 may now be found by returning to Eq. (52), setting t ¼ t2 and making the

previous approximation for the cosine term, and now also for the exponential using the first three
terms of the series expansion, i.e.,

exE1þ x þ x2=2: ð57Þ

The solution of a quadratic equation in x2, x2 ¼ orrt2 may with some patience, be found as

x2 ¼ ð1þ drx1Þ � dr sinf7ðx1 � dr sinfÞ=ð1þ d2r sinfÞ; ð58Þ

where Eq. (55) was used for the definition of: x1 ¼ orrt1: The time period t2 is the positive root of
Eq. (58). The contact duration tc is therefore the sum of t1 and t2, i.e.,

tc ¼ 2ðt1 � dr sinf=orrÞ=ð1þ d2r sinfÞ: ð59Þ

This expression is plotted in Fig. 7(a) for four different loss ratios. When the loss ratio is 0.01
and 0.1, the contact period is that of the undamped case given in Eq. (49) or (56). The contact
period is seen to decrease when the loss ratio increases to 0.5 or the maximum of 1. This is
expected as contact occurs when there is a reaction force between the colliding bodies arising from
the stored strain energy; if this energy is dissipated the force is lost and the contact ceases. At first
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sight it would appear that Eq. (59) has the unfortunate possibility of becoming negative for short
contact times. This is not in fact the case because sin f; which also occurs within t1, also includes
the loss ratio seen in Eq. (36).
Eq. (59) is in error when there is very high loss and short contact duration, as represented on

Fig. 7(a) for #bo0:1 dr ¼ 0:5;1. This is because of the approximation used for the exponential in
Eq. (57). Inspection of Eq. (59) and Fig. 7(a) suggest an accurate and simple contact time which is
valid for all cases is

tc ¼ 2t0=ð1þ d2r sinf0Þ; ð60Þ

where the undamped parameters from Eqs. (36) and (37) are used, namely,

sinf0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ #b2

q
ð61Þ

and t0 is half the undamped contact period, i.e.,

t0 ¼ ð2ð1� sinf0ÞÞ
1=2=orr: ð62Þ

given in Eq. (49) in an approximate form. Eq. (60) is displayed in Fig. 7(b), where it can be seen to
correspond to the accurate section of Fig. 7(a)
To confirm the contact time calculations the relative displacement, from Eq. (36), is plotted in

Figs. 8(a), 9(a), 10(a) as a function of loss ratio dr and the impact strength #b the accompanying
relative velocities given from the differential of Eq. (36) are

’ur ¼ Drxre�grrt cosðorrt þ fþ d0rÞ=sinf; ð63Þ

where

d0r ¼ arctandr

are plotted in Figs. 8(b), 9(b) and 10(b). These are normalized by setting Dr ¼ 1; orr ¼ 1: Four loss
ratios are used: 0.01, 0.1, 0.5, 1.0, covering the full range of possibilities. In Fig. 8 the impact
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Fig. 8. Relative displacement (a) and relative velocity (b) against non-dimensional time: impact strength=100; loss

ratios: 0.01, 0.1, 0.5, 1.0, in order from the top.
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strength is 100. For low loss the relative displacement is a half sine wave and the relative velocity is
a half cosine. When the damping is increased the contact time is almost unaffected, as seen in
Fig. 7, there is however considerable attenuation to the peak relative displacement and to the exit
relative velocity.
Fig. 9 shows the contact pulse when the impact ratio is unity, indicating that only one half of

the kinetic energy at contact is transferred into strain energy within the contact. For low damping
the pulse duration is half that of the high impact ratio example in Fig. 8, while for heavy damping
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Fig. 9. Relative displacement (a) and relative velocity (b) against non-dimensional time: impact strength=1.0; loss

ratios: 0.01, 0.1, 0.5, 1.0, in order from the top.

Fig. 10. Relative displacement (a) and relative velocity (b) against non-dimensional time: impact strength=0.1; loss

ratios: 0.01, 0.1, 0.5, 1.0, in order from the top.
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the contact time is a quarter of that of Fig. 8. Inspection of the exit velocity shows that the
reduction in contact duration leads to considerably less energy dissipation.
Fig. 10 gives the contact pulses for slight contact when the impact ratio is one-tenth. The

contact duration is very brief and accordingly there is little attenuation, the relative velocities only
include the zero crossing section of the cosine form. The contact times are all correctly given by
Eq. (60) in Fig. 7(b), confirming its utility.
The work done during contact may be simply estimated from the difference in the initial and

final kinetic energy, calculated from the initial and final velocities at times 0 and tc as

#Wd ¼ Tdð1� e2Þ: ð64Þ

The coefficient of restitution e is defined in the usual way:

’urðtcÞ ¼ �e ’urð0Þ:

or from Eq. (36)

e ¼ expð�drorrtcÞ:

Td is the energy of the collision described in Eq. (40). The contact time tc increases with impact
strength #b as given in Eqs. (60) and (61) and seen in Fig. 7(a). The coefficient of restitution is
therefore a function of the impact strength #b: For impact strength greater than unity the
coefficient of restitution will be independent of collision velocity (as is generally assumed).

7. The relative and mean motion during contact

The approach used in this analysis is to regard the dynamics in terms of sum and difference
motion. The collision and energy dissipation is associated with the relative or difference motion,
causing no direct change to the sum motion. There are however secondary changes to the sum
motion us in response to the changes in the relative motion to conserve linear momentum. This
interaction as described in Eq. (7) has two parts; a forced solution us1 representing the change sum
motion due to the change in relative motion, and a free vibration solution us2 which satisfies the
initial conditions for sum motion at the instant of contact.
The forced solution us1 is found by substituting the relative motion ur; from Eq. (51), into

Eq. (7)

Ksus ¼ �Dre�grrt1Rfðkd � o2rmdÞeixrtg=sinfþ DrRfkdg: ð65Þ

The solution takes the form

us1 ¼ Aeixrt þ A�eix
�
r t þ C; ð66Þ

where A is a complex constant and C is a real constant. Substitution into Eq. (65) yields

us1 ¼
�Dre�grrt1

sinf
R

kd � o2rmd

ks � o2rms

� �
eixrt

� �
þ DrR

kd

ks

� �
: ð67Þ

As expected from the symmetry of the momentum equation, the sum motion us1 is similar to the
relative motion ur; given in Eq. (51). The ratio us1=ur decreases with the quotient in the centre of
Eq. (67), which is Kd=Ks at frequency xr: If the two oscillators are identical there is no forced sum
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motion as Kd is zero. This means that if the colliding structures are physically similar as would be
the case for adjacent buildings, the sum and difference motions can be regarded independently.
A further simplification may be made by observing that the interaction frequency xr in Eq. (22)

is always greater than the free interaction frequency od0 in Eq. (12) i.e.

xr=od0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ kd0Þ=kd0

p
: ð68Þ

The sum frequency os can be defined from Eq. (1) as

o2s ¼ ka þ kb=ðma þ mbÞ: ð69Þ

so the ratio of uncoupled difference frequency to sum frequency is

od0=os ¼ oaob=o2s : ð70Þ

This ratio becomes unity if oscillators a and b are similar, i.e., of the same elastic modulus,
density and shape, but of a different size, then ka ¼ pkb; mb ¼ pma;; where p is the scaling factor.
Under these conditions xr > xs and Eqs. (51) and (67) give the ratio of sum motion to relative
motion as us=ur ¼ R; where R is

REð�md þ o2rkdÞ=ms: ð71Þ

For a hard contact, i.e., xrcxs; R ¼ �md=ms as for the collision of two free bodies. Fig. (11)
illustrates this change to the sum displacement and sum velocity within the contact period because
of the relative motion, which is also shown. The peak relative displacement is given from Eq. (51)
as

#ur ¼ e�grrt1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2r þ ’U2

d=o
2
rr

q
� Dr: ð72Þ

The quantity us1 discussed above only represents the change in us during the contact period, as
there is also the free vibration component us2; which satisfies the left- side of Eq. (7), i.e.,

Ksus2 ¼ 0; ð73Þ

such that the total response within the contact period is

us ¼ us1 þ us2: ð74Þ

The free vibration solution takes the usual form, used for example in Eq. (27) as

us2 ¼ As2e
ixst þ A�

s2e
�ix�

s t: ð75Þ

This is valid during contact, i.e., �t1otot1; and must satisfy the initial conditions at t ¼ �t1:

us ¼ Us; us1 ¼ 0; ’us ¼ ’Us; ’us1 ¼ R ’Ud: ð76Þ

These substitutions yield:

As2 ¼ eixst1ðUs � iðð ’Us � R ’UdÞ=xsÞ=2: ð77Þ

To summarize the simplest and most useful case which is that of a hard contact, i.e., orcos; the
dynamics become those of two colliding masses and

us1=ur ¼ �md=ms
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at initial contact:

’us ¼ ’Us; ’ur ¼ ’Ud; ð78Þ

at final contact:

’us ¼ ’Us þ eR ’Ud; ’ur ¼ �e ’Ud: ð79Þ

These terms may then be used to obtain the energy loss and exchanged in the collision, and they
may also be substituted back into Eq. (2) for the motions of the individual oscillators. The only
difference between expressions (78) and (79) with those normally used for the impact of two free-
bodies is that the coefficient of restitution e is a function of the contact stiffness, damping and the
impact strength.

8. Conclusions

The contact dynamics between two colliding oscillators has been calculated using the sum and
difference motions. The contact mainly influences the difference or relative motion as is usually
assumed when a coefficient of restitution is used. There are changes in the sum motion in response
to the change in relative motion. These are calculated from the momentum equation in the usual
way. For identical oscillators the relative and sum motion are shown to be independent; however,
it is also shown that within the short contact duration these motions are almost independent
provided that the two oscillators have ratio of resonance frequencies that is less than two. In this
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Fig. 11. Relative displacement and sum displacement due to contact (a), relative velocity and sum velocity due to

contact (b).
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range a new coefficient of restitution can be defined in terms of all the mechanical properties of the
oscillators.
The contact time was found to increase with the contact stiffness and relative velocity and

decrease with the damping ratio and the oscillator separation. A strong impact gives a half sine
displacement pulse, while a weak impact gives a truncated half sine pulse. The analysis was
confirmed using an alternative approach employing an energy balance.
The main outcome is that a coefficient of restitution describing the energy loss in the collision

was calculated, which increases with the contact stiffness, damping, and the relative velocity.
However, it decreases with the oscillator spacing. Above a certain threshold the contact time and
coefficient of restitution become invariant with the magnitude of the relative velocity at impact.
This threshold occurs when at the moment of contact, for relative motion, the strain energy in the
oscillators is equal to the kinetic energy. For free bodies there is therefore no such threshold and
the coefficient of restitution is constant, as is usually assumed.
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